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Abstract

The nucleolus solution for cooperative games in characteristic function form is usually computed

numerically by solving a sequence of linear programming (LP) problems, or by solving a single, but

very large-scale, LP problem. This paper proposes an algebraic method to compute the nucleolus

solution analytically (i.e., in closed-form) for a three-player cooperative game in characteristic

function form. We �rst consider cooperative games with empty core and derive a formula to

compute the nucleolus solution. Next, we examine cooperative games with non-empty core and

calculate the nucleolus solution analytically for �ve possible cases arising from the relationship

among the value functions of di¤erent coalitions.

Key words: Three-player cooperative game in characteristic function form, nucleolus, linear pro-
gramming.



1 Introduction

Cooperative game theory studies situations involving multiple players who can cooperate and take

joint actions in a coalition to increase their �wealth.� The important problem of allocating the

newly accrued wealth among the cooperating players in a fair manner has occupied game theorists

since the 1940s. More than a dozen alternate solution concepts have been proposed to determine

the allocation but only a few of these concepts have received the most attention. Von Neumann

and Morgenstern [21] who were the originators of multiperson cooperative games proposed the

�rst solution concept for such games known as the stable set. However, due to the theoretical and

practical di¢ culties associated with it, the stable set concept fell out of favour. In 1953, Gillies

[6] introduced the concept of core as the set of all undominated payo¤s (i.e., imputations) to the

players satisfying rationality properties. Even though the core has been found useful in studying

economic markets, it does not provide a unique solution to the allocation problem. Also in 1953,

Shapley [18] wrote three axioms which would capture the idea of a fair allocation of payo¤s and

developed a simple, analytic, expression to calculate the payo¤s. Shapley value can be computed

easily by using a formula regardless of whether or not the core is empty. However, when the core is

non-empty, Shapley value may not be in the core and under some conditions the allocation scheme

in terms of Shapley value may result in an unstable grand coalition.

An alternative solution concept known as the nucleolus was introduced by Schmeidler [17] in

1969 who proposed an allocation scheme that minimizes the �unhappiness�of the most unhappy

player. Schmeidler [17] de�nes �unhappiness�(or, �excess�) of a coalition as the di¤erence between

what the members of the coalition could get by themselves and what they are actually getting if

they accept the allocations suggested by a solution. It was shown by Schmeidler [17] that if the <R1.3.1

core for a cooperative game is non-empty, then the nucleolus is always located inside the core and

thus assures the stability of the grand coalition. Unfortunately, unlike the Shapley value, there

exists no closed-form formula for the nucleolus solution which has to be computed numerically in

an iterative manner by solving a series of linear programming (LP) problems, or by solving a very

large-scale LP problem (see, for example, Owen [14] and Wang [22] for textbook descriptions of

these methods). The objective of this paper is to present analytic expressions to calculate the

nucleolus solution directly without the need for iterative calculations that involve the solution of

linear programs.

Nucleolus solution is an important concept in cooperative game theory even though it is not <R1.3.2

easy to calculate. As Maschler et al. [11, p. 336] pointed out, the nucleolus satis�es some desirable

properties� e.g., it always exists uniquely in the core if the core is non-empty, and is therefore <R2.1

considered an important fair division scheme. As a consequence, some researchers have used this

concept to analyze business and management problems; but, due to the complexity of calculations,

the nucleolus has not been extensively used to solve allocation-related problems. As an early

publication for the application of the nucleolus, Barton [1] suggested the nucleolus solution as a tool

for accounting decision makers to allocate joint costs among entities who share a common resource.

Barton showed that using the nucleolus for this allocation problem can reduce the possibility that
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one or more entities may wish to withdraw from the resource-sharing arrangement.

We should point out that in Barton�s cost allocation problem, if the cost for running the common <R1.4

resource increases, then the nucleolus solution may suggest a lower cost allocated to some entities

which is counter-intuitive. This is possible because, as Megiddo [12] showed, the nucleolus is not

always monotonic. For Barton�s problem in [1], the monotonicity of a solution means that, if the

cost incurred by each possible coalition� in which all entities share the common resource� increases,

then the cost allocation to each entity should not. It has been shown that there are other solution

concepts that satisfy the monotonicity property and may be used instead of the nucleolus. For

example, Young [23] proved that the Shapley value is a unique, monotonic solution, even though,

as pointed out above, it may not be in the core if the core is non-empty. In [8], Grotte normalized the

nucleolus (by dividing the �excess�of each coalition by the number of players in the coalition) and

correspondingly, introduced the new concept �per capita (normalized) nucleolus�as an alternative

to the original nucleolus solution. Grotte showed that the per capita nucleolus is monotonic and

also always exists in the core if the core is non-empty. Thus, for some cost-sharing problems such

as that in Barton [1], the per capita nucleolus may be better than the nucleolus solution; but, we

note that the calculation for the per capita nucleolus could be even more complicated than that for

the nucleolus. For other publications concerning the applications of the nucleolus, see, e.g., Du et

al. [4], Gow and Thomas [7], and Leng and Parlar [10].

An n-player game in characteristic-function form (as originally formulated by von Neumann

and Morgenstern [21, Ch. VI]) is de�ned by the set N = f1; 2; : : : ; ng and a function v(�) which, for
any subset (i.e., coalition) S � N gives a number v(S) called the value of S (see, also, Stra¢ n [20,

Ch. 23]). The characteristic value of the coalition S, denoted by v(S), is the payo¤ that all players

in the coalition S can jointly obtain. For a characteristic function game (N; v), let xi represent

an imputation (i.e., a payo¤) for player i = 1; 2; : : : ; n. The nucleolus solution is de�ned as an n-

tuple imputation x = (x1; x2; : : : ; xn) such that the excess (�unhappiness�) eS(x) = v(S)�
P
i2S xi

of any possible coalition S cannot be lowered without increasing any other greater excess; see,

Schmeidler [17]. With this de�nition, we �nd that the nucleolus of a cooperative game is a solution

concept that makes the largest unhappiness of the coalitions as small as possible, or, equivalently,

minimizes the worst inequity. In the sequential LP method that is based on lexicographic ordering

(Maschler et al. [11]), to �nd the nucleolus solution we �rst reduce the largest excess maxfeS(x),
for all S � Ng as much as possible, then decrease the second largest excess as much as possible,
and continue this process until the n-tuple imputation x is determined.

Since the introduction of the nucleolus solution in 1969, many researchers have proposed al-

ternative approaches to compute the nucleolus. As we indicated above, one of the most popular

methods to compute the nucleolus is to solve a series of linear programming (LP) problems. In the

past four decades, a number of publications have presented di¤erent LP algorithms (some using

the sequential LP method, others using a single, but very large, LP formulation) to compute the

nucleolus solution. In Table 1, we review these publications in chronological order, and brie�y

describe their contributions to the LP method for �nding the nucleolus.
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Year Author(s) Brief Description of Major Algorithms in the LP Method

1972 Kohlberg [9]

When the set of payo¤ vectors is a polytope, the nucleolus can be

obtained as the solution of a single LP problem with n variables and

(2n)! constraints.

1974 Owen [13]

When the set of payo¤ vectors is a polytope, the nucleolus can be

obtained as the solution of a single LP problem with 2n+1 + n variables

and 4n + 1 constraints.

1979
Maschler, Peleg

and Shapley [11]

The nucleolus was characterized as the lexicographic center of a

cooperative game, and it can be found by solving a series of O(4n)

minimization LP problems with constraint coe¢ cients of either � 1, 0 or 1.

1981 Behringer [2]

Simplex based algorithm developed for general lexicographically extended

linear maxmin problems to �nd the nucleolus by solving a sequence of

O(2n) LP problems.

1981 Dragan [3]
Using the concept of coalition array, linear programs with only O(n) rows

and O(2n) columns are used to �nd the nucleolus solution.

1991 Sankaran [16]
Algorithm to �nd the nucleolus solution by solving a sequence of O(2n) LP

problems. However, this method needs more constraints than in Behringer [2].

1994
Solymosi and

Raghavan [19]

Algorithm to determine the nucleolus of an assignment game. In an

(m;n)-person assignment game, the nucleolus is found in at most m(m+ 3)=2

steps, each one requiring at most O(mn) elementary operations.

1996
Potters, Reijnierse

and Ansing [15]

The nucleolus solution can be found by solving at most n� 1 linear programs
with at most 2n � 1 rows and 2n + n� 1 columns.

1997 Fromen [5]
By utilizing Behringer�s algorithm [2], the number of LP problems

to �nd the nucleolus is reduced to O(n).

Table 1: A brief review of important algorithms to compute the nucleolus using the LP method.

The description of the methods to �nd the nucleolus as summarized in Table 1 shows that most

LP-based methods are iterative in nature and when they are not iterative, the resulting LP can be

quite large (as in Kohlberg [9] and Owen [13]). For further discussions regarding these LP methods,

see the online Appendix B, in which we compare the LP methods listed in Table 1, and use two

examples to illustrate Maschler et al.�s algorithm [11], and Potters et al.�s [15] and Fromen�s LP

methods [5] that are relatively simpler than the others.

In this paper we focus on three-player cooperative games in characteristic-function form, and

present an algebraic method that determines the nucleolus analytically (i.e., using closed-form

expressions) without the need for iterative algorithms. Furthermore, we limit our discussion to the <R2.2

case of superadditive and essential games. [In a superadditive game, v(S[T ) � v(S)+v(T ) for any
two disjoint coalitions S and T ; and in an essential game, v(123) > v(1) + v(2) + v(3); see, Stra¢ n

[20].] This is a reasonable limitation because if a game is not superadditive and/or essential, then

the grand coalition will not be stable since the players would be better o¤ by leaving this coalition.

Thus, when a game is not superadditive and/or essential, it is unnecessary to examine the problem

of fairly allocating the system-wide pro�t (that is, the characteristic value of grand coalition) among

all players. An example of a 3-player game that is not essential is given by Maschler et al. [11]

as [v(?) j v(1); v(2); v(3) j v(12); v(13); v(23) j v(123)] = [0 j 0; 0; 0 j 0; 0; 10 j 6]. Here, the grand
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coalition f1; 2; 3g is not stable since coalition f2; 3g can gain more if they do not join the grand
coalition because v(23) = 10 > v(123) = 6.

Without loss of generality, and as justi�ed in Stra¢ n [20, Ch. 23, pp. 152�153], in our three-

player superadditive and essential game the characteristic values of the empty and one-player coali-

tions are assumed zero, i.e., v(?) = v(1) = v(2) = v(3) = 0; the characteristic values of two-player
coalitions are non-negative, i.e., v(ij) � 0, for i, j = 1, 2, 3, i 6= j; and the characteristic value

of the grand coalition f123g is positive, i.e., v(123) > 0. If this is not the case, then, as discussed
in Maschler et al. [11] and demonstrated in Stra¢ n [20, Ch. 23, pp. 153], we can transform any

superadditive, and essential three-player game to a �0-normalized�game with zero characteristic

values of all one-player coalitions. For an example, see the online Appendix A.

The remainder of the paper is organized as follows. In Section 2, we �rst derive a closed-

form algebraic formula to compute the nucleolus solution for three-player characteristic-function

cooperative games with empty core. Then, we investigate the computation of the nucleolus when

the core of a cooperative game is non-empty, and present �ve closed-form formulas each arising

from the relationship among the value functions of di¤erent coalitions. We use two examples to

illustrate our algebraic method. In Section 3, we summarize the paper and provide some suggestions

for future research.

2 Algebraic Method for Computing the Nucleolus Solution Ana-

lytically

In this section, we develop an algebraic method to compute the nucleolus of a three-player coop-

erative game analytically without the need for linear programming. That is, we derive explicit

formulas to compute the nucleolus. We �rst present our analysis for the relatively simpler case

of a cooperative game with empty core. This is followed by the more complicated analysis of the

nucleolus computation for cooperative games with non-empty core.

Since we shall minimize the excesses of all possible coalitions to �nd the nucleolus solution, we

�rst compute these excesses at an imputation x as follows:

ei(x) = v(i)� xi = �xi, for i = 1; 2; 3, (1)

eij(x) = v(ij)� xi � xj = v(ij)� v(123) + xk, for i; j; k = 1; 2; 3 and i 6= j 6= k, (2)

e123(x) = v(123)� x1 � x2 � x3 = 0. (3)

Note that due to the collective rationality assumption we have e123(x) = 0 in (3); that is, the payo¤

v(123) of the grand coalition f123g is divided to determine three players�payo¤s x1, x2 and x3.
The collective rationality assumption is then used to �nd the equalities in (2).
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2.1 Algebraic Method for Empty-Core Cooperative Games

We now consider a superadditive and essential cooperative game with empty core, and derive a

formula for computing the nucleolus solution.

Theorem 1 If the core of a three-player cooperative game in characteristic function form is empty,
then the nucleolus solution y = (y1;y2; y3) is computed as

yi =
v(123) + v(ij) + v(ik)� 2v(jk)

3
, for i; j; k = 1; 2; 3 and i 6= j 6= k. (4)

Proof. See the online Appendix C.
We use the formula in Theorem 1 to compute the nucleolus solution for the following cooperative

game. In the online Appendix B, we illustrate the solution of the same problem using the more

tedious linear programming-based algorithms.

Example 1 Consider the following three-player superadditive and essential cooperative game in
characteristic function form: v(?) = 0; v(i) = 0, for i = 1; 2; 3; v(12) = 5, v(13) = 6, v(23) = 8;

v(123) = 9. It is easy to show that for this game the core is empty1. Using Theorem 1, we compute

the nucleolus solution as y1 = 1
3(5 + 6 + 9 � 2 � 8) =

4
3 , y2 =

1
3(5 + 8 + 9 � 2 � 6) =

10
3 and

y3 =
1
3(6 + 8 + 9 � 2 � 5) =

13
3 , which is the same as the result given by solving a series of linear

problems in online Appendix B. J

2.2 Algebraic Method for Nonempty-Core Cooperative Games

We now derive the formulas that are used to compute the nucleolus solution for a three-player

cooperative game with a non-empty core. Since the core is not empty, the nucleolus solution must

be in the core (see, for example, Stra¢ n [20, Ch. 23]), and thus, the excesses in (1) and (2) in terms

of the nucleolus are non-positive, i.e., ej(y) � 0, for j = f1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3g. In order
to determine the nucleolus solution, we must �rst reduce the largest excesses to minimum and then

decrease the second largest excess and other excesses. To that end, we �rst �nd the necessary and

su¢ cient conditions under which the largest excesses are reduced to the minimum.

Lemma 1 For a three-player cooperative game with a non-empty core, the largest excesses are
reduced to minimum if and only if at least one of the following conditions is satis�ed:

1. With imputation x = (x1; x2; x3) =
�
1
3v(123);

1
3v(123);

1
3v(123)

�
, and, v(123) � max(3v(12);

3v(13); 3v(23)).

2. With imputation

x = (x1; x2; x3) =

�
v(123) + v(12)

2
� x2; x2;

v(123)� v(12)
2

�
, (5)

1A simpler method for testing whether the core is empty or not is to solve the following linear program: min x1
subject to x1 + x2 � v(12), x1 + x3 � v(13), x2 + x3 � v(23), x1 + x2 + x3 = v(123), xi � 0, i = 1; 2; 3. If the LP has
no feasible solution, then the core is empty; otherwise the core is non-empty.
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and,

max

�
v(23);

v(123)� v(12)
2

�
� x2 � min

�
v(12);

v(123) + v(12)

2
� v(13)

�
. (6)

3. With imputation

x = (x1; x2; x3) =

�
x1;

v(123)� v(13)
2

;
v(123) + v(13)

2
� x1

�
, (7)

and,

max

�
v(12);

v(123)� v(13)
2

�
� x1 � min

�
v(13);

v(123) + v(13)

2
� v(23)

�
. (8)

4. With imputation

x = (x1; x2; x3) =

�
v(123)� v(23)

2
;
v(123) + v(23)

2
� x3; x3

�
, (9)

and,

max

�
v(13);

v(123)� v(23)
2

�
� x1 � min

�
v(23);

v(123) + v(23)

2
� v(12)

�
. (10)

5. With imputation

xi =
v(123) + v(ij) + v(ik)� 2v(jk)

3
, for i; j; k = 1; 2; 3 and i 6= j 6= k, (11)

and,

v(123) + v(jk) � 2[v(ij) + v(ik)], for i; j; k = 1; 2; 3 and i 6= j 6= k. (12)

Proof. See the online Appendix D.
In Lemma 1 we have derived the necessary and su¢ cient conditions under which the largest

excesses are minimized. In order to �nd the nucleolus solution, we need to reduce the second largest

excess and the subsequent excesses to minimum.

Theorem 2 For a three-player, nonempty-core cooperative game in characteristic function form,
the nucleolus solution y = (y1; y2; y3) can be computed as follows:

1. If v(123) � 3v(ij), for i; j = 1; 2; 3 and i 6= j, then y1 = y2 = y3 = 1
3v(123).

2. If v(123) � v(ij) + 2v(ik), v(123) � v(ij) + 2v(jk) and v(123) � 3v(ij), for i; j; k = 1; 2; 3

and i 6= j 6= k, then yi = yj = 1
4 [v(123) + v(ij)] and yk =

1
2 [v(123)� v(ij)].

3. If v(123) � v(ij) + 2v(ik), v(123) � v(ij) + 2v(jk) and v(ij) � v(ik), for i; j; k = 1; 2; 3 and
i 6= j 6= k, then yi = 1

2 [v(ij) + v(ik)], yj =
1
2 [v(123)� v(ik)], and yk =

1
2 [v(123)� v(ij)].

4. If v(123) + v(ij) � 2[v(ik) + v(jk)], v(123) � v(ij) + 2v(ik) and v(123) � v(ij) + 2v(jk), for
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i; j; k = 1; 2; 3 and i 6= j 6= k, then

yi =
1

4
fv(123) + v(ij) + 2[v(ik)� v(jk)]g, yj =

1

4
fv(123) + v(ij) + 2[v(jk)� v(ik)]g,

yk =
1

2
[v(123)� v(ij)].

5. If v(123) + v(ij) � 2[v(ik) + v(jk)], for i; j; k = 1; 2; 3 and i 6= j 6= k, then

yi =
1

3
fv(123) + v(ij) + v(ik)� 2v(jk)g, yj =

1

3
fv(123) + v(ij) + v(jk)� 2v(ik)g,

yk =
1

3
fv(123) + v(ik) + v(jk)� 2v(ij)g.

Proof. See the online Appendix E.
We observe from Theorem 2 that, as the characteristic value of the grand coalition v(123) <R2.6

<AE.2.6increases, the allocation to one or two players may be decreased. For example, we now consider

the second case (in Theorem 2), in which v(123) � v(ij) + 2v(ik), v(123) � v(ij) + 2v(jk) and

v(123) � 3v(ij), for i; j; k = 1; 2; 3 and i 6= j 6= k. For this case, the allocation scheme suggested
by the nucleolus solution is given as follow: yi = yj = 1

4 [v(123) + v(ij)] and yk =
1
2 [v(123)� v(ij)].

Since v(ij) < v(123) for the superadditive and essential game, we �nd that yi = yj 6= yk. If we

increase v(123) to a su¢ ciently large value v0(123) so that the �rst case in Theorem 2 applies, then

we �nd that the allocation scheme is changed to the following: y1 = y2 = y3 = 1
3v
0(123). Comparing

the new allocation scheme and that obtained before we increase v(123) to v0(123), we �nd that one

or two players may be worse o¤ when the characteristic value of the grand coalition is increased.

More speci�cally, if v(ij) < 2
3v
0(123) � v(123), then yk = 1

2 [v(123) � v(ij)] >
1
3v
0(123). Because

yi+ yj + yk = v(123) < v
0(123), we �nd that yi = yj = 1

4 [v(123)+ v(ij)] <
1
3v
0(123). It thus follows

that, after the characteristic value of the grand coalition is increased from v(123) to v0(123), player

k is worse o¤ and players i and j are better o¤. We also note that, if v(ij) > 4
3v
0(123) � v(123),

then yi = yj = 1
4 [v(123) + v(ij)] >

1
3v
0(123) and yk = 1

2 [v(123) � v(ij)] <
1
3v
0(123), which means

that player k is better o¤ but players i and j are worse o¤. This discussion demonstrates that the

nucleolus is not always monotonic, as proved by Megiddo [12].

Next, we provide an example to illustrate our analytic results in the above theorem.

Example 2 We now use our algebraic method given in Theorem 2 to solve the following three-

player cooperative game: v(?) = 0; v(i) = 0, for i = 1; 2; 3; v(12) = 1, v(13) = 4, v(23) = 3;

v(123) = 6. Since the core of this game is non-empty, we use one of the formulas in Theorem 2 to �nd

the nucleolus solution. Since v(123) = 6 � v(13) + 2v(23) = 10, v(123) = 6 � v(13) + 2v(12) = 6,
v(13) = 4 � v(23) = 3, the third case (with i = 3, j = 1 and k = 2) in Theorem 2 is eligible to

calculate the nucleolus y = (y1; y2; y3) as y1 = [v(123)�v(23)]=2 = 1:5, y2 = [v(123)�v(13)]=2 = 1
and y3 = [v(13) + v(23)]=2 = 3:5, which is the same as the solution given by the sequential LP

method in the online Appendix B. J
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We have written Maple worksheets which test the emptiness of the core (CoreTest.mws), and

calculate the nucleolus solution when the core is empty (Nucleolus-EmptyCore.mws) and when it

is nonempty (Nucleolus-NonEmptyCore.mws). These �les work with Maple 10, 11 and 12, and

they can be downloaded from the authors�web site at http://www.business.mcmaster.ca/OM/

parlar/files/nucleolus/.

3 Summary and Concluding Remarks

Linear programming plays a prevalent role in computing the nucleolus solution of a cooperative

game in the characteristic function form. However, this method requires the solution of a sequence

of linear problems, thus making it inconvenient to use. To simplify the computations in calculating

the nucleolus, we propose an algebraic method that gives the nucleolus analytically. This paper

focuses on a three-player cooperative game. As discussed in Section 2.1, only a single formula is

needed for computing the nucleolus solution when the core of a three-player game is empty. In

Section 2.2, we derive some formulas each used under three speci�c conditions. Two examples are

presented to illustrate our algebraic method.
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Appendix A Transformation of a Superadditive and Essential Game

to a �Zero-Normalized�Game

We provide an example to show how to transform a superadditive, and essential three-player game

to a �0-normalized�game with zero characteristic values of all one-player coalitions. Consider the

game (N; v) with [v(?) j v(1); v(2); v(3) j v(12); v(13); v(23) j v(123)] = [0 j 1; 2; 3 j 8; 10; 13 j 15].
We can transform (N; v) to the following strategically equivalent game (N; v0) by subtracting a

suitable constant ci from player i�s payo¤ and (from the value of any coalition containing player i).

This gives,
v0(?) = 0 v0(12) = v(12)� v(1)� v(2) = 5

v0(1) = v(1)� 1 = 0 v0(13) = v(13)� v(1)� v(3) = 6
v0(2) = v(2)� 2 = 0 v0(23) = v(23)� v(2)� v(3) = 8
v0(3) = v(3)� 3 = 0 v0(123) = v(123)� v(1)� v(2)� v(3) = 9.

Using the analytic formula in Section 2.1, the nucleolus solution for this (empty core) game (N; v0)

is obtained as y0 = (y01; y
0
2; y

0
3) = (

4
3 ;
10
3 ;

13
3 ). The nucleolus solution for the original problem is then

computed as y = (y1; y2; y3) = (43 + 1;
10
3 + 2;

13
3 + 3) = (73 ;

16
3 ;

22
3 ) which satis�es the collective

rationality condition y1 + y2 + y3 = v(123) = 15.

Appendix B Sequential LP Method for Computing the Nucleolus

Solution

Our brief review presented in Table 1 indicates that, as an early publication on the sequential LP

method, Maschler et al. [11] used the concept of lexicographic centre to develop an LP procedure

involving O(4n) LP minimization problems. This LP approach has been adopted by some textbooks

(e.g., Wang [22]) as a �typical�method to calculate the nucleolus solution. However, because the LP

method in [11] requires solving a large number of linear problems, later researchers have investigated

methods to �nd more e¢ cient LP approach for the calculation of the nucleolus solution.

We see in Table 1 that, immediately after Maschler et al. [11], Behringer [2] reduced the number

of LP problems that are needed to �nd the nucleolus. We also �nd from Table 1 that, following

Behringer [2], others (i.e., Dragan [3], Sankaran [16], and Solymosi and Raghavan [19]) attempted to

further improve the LP method; but, they didn�t �nd any method better than Behringer [2]. More

speci�cally, in [3] Dragan�s LP approach may need more than O(2n) linear problems even though

this author claimed that only n� 1 linear programs can be used to �nd the nucleolus. In addition,
the solution found by the LP approach in [3] is actually the prenucleolus rather than the nucleolus

solution, as discussed by Potters et al. [15]. Sankaran [16] developed an LP approach which

1
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may require the same number of linear problems as in Behringer [2] but needs more constraints.

Solymosi and Raghavan�s approach in [19] is only applied to a special type of cooperative games

(i.e., assignment games).

Potters et al. [15] suggested an LP approach that may reduce the number of linear problems;

but, this approach increases the size of each linear problem. From Table 1, we also �nd that Fromen

[5] improved Behringer�s algorithm [2] to reduce the number of linear problems without increasing

each LP problem�s size.

Based on our above discussion, we �nd that the LP approaches in Potters et al. [15] and

Fromen [5] should be two �relatively easy-to-implement�ones compared with other LP methods.

Accordingly, in this appendix, we �rst describe Maschler et al.�s sequential LP approach in Appendix

B.1 and present two examples to illustrate this approach; we do this because the approach in [11]

is an early one in applying the LP method to the calculation of the nucleolus solution. Then, in

Appendices B.2 and B.3, we respectively summarize the LP methods by Potters et al. [15] and

Fromen [5], and illustrate these two methods with two numerical examples (that are considered to

illustrate Maschler et al.�s LP approach).

Even though this appendix does not contain original theoretical material, we have decided to

include it for (i) the clari�cation of the sequential LP method and (ii) the comparison between the

sequential LP method and our algebraic method for a three-player cooperative game. Note that

our summary of the LP method is not limited to three-player games but it can be used to �nd the

nucleolus of any cooperative game with n � 3 players.

B.1 Algorithm for the Sequential LP Method in Maschler et al. [11, 1979]

The existing numerical technique in Maschler et al. [11] requires the sequential solutions of O(4n)

linear programs some of which may exhibit alternative optimal solutions. We next include a careful,

step-by-step, description of all the steps involved in Maschler et al.�s algorithm.

In order to �nd the nucleolus solution using linear programming for a superadditive and essential

0-normalized three-player cooperative game, we develop and solve a sequence of LP problems. To

initiate the LP sequences for such a game with imputations x = (x1; x2; x3), we de�ne B0 �
ff1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3gg, as the set of all proper single- and two-player coalitions and
X0 � fx : x1 + x2 + x3 = v(123); x1 � v(1); x2 � v(2); x3 � v(3)g, as the set of all feasible
allocations/imputations that satisfy, (i) collective rationality, [i.e., x1 + x2 + x3 = v(123)], and (ii)

individual rationality, [i.e., xi � v(i), i = 1; 2; 3]. Note that if the cooperative game had involved n
players, then B0 � fS � N : S 6= ? and S 6= Ng and X0 � fx :

Pn
i=1 xi = v(N); xi � v(i); i =

1; : : : ; ng.
Consider the �rst step in the algorithm and let k = 1: First, recall that eS(x) = v(S)�

P
i2S xi is

de�ned as the �excess/unhappiness�of coalition S with imputation x. We let maxS2B0 eS(x) = �1
as maximal excess and note that �1 � eS(x) = v(S) � x(S) for S 2 B0 where x(S) �

P
i2S xi.

2
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Now, formulate the �rst LP problem as,

min z = �1, subject to v(S)� x(S) � �1, S 2 B0, x 2 X0, �1 free variable.

Let "1 = minx2X0 maxS2B0 eS(x) denote the minimized value of maximal excess and let X
1 denote

the allocations found after solving the 1st linear program, i.e., X1 � fx 2 X0 : maxS2B0 eS(x) =

"1g. Naturally, there exists no coalition and no allocation in X1 for which excess exceeds "1.

However, for some coalitions, excess may be constant and equal to "1 for all allocations x 2 X1.

Let A1 denote the set of such coalitions. For the remaining coalitions B1, there must be some point

in X1 where their excess is less than "1. That is,

A1 = fS 2 B0 : eS(x) = "1, for all x 2 X1g,

B1 = fS 2 B0 : eS(x) < "1, for some x 2 X1g = B0 nA1.

With this construction, we see that coalitions in A1 cannot object to imputation X1 since

they all have the same excess and thus they are �neutralized�. If B1 were empty, i.e., if all

coalitions belonged to A1, then X1 would contain a single point to which there should not be any

objections; in this case the single point is the nucleolus. For example, if [v(?) j v(1); v(2); v(3) j
v(12); v(13); v(23) j v(123)] = [0 j 0; 0; 0 j 2; 2; 2 j 6], then x1 = x2 = x3 = 2, "1 = �2 and
A1 = ff1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3gg, thus B1 = ? and the algorithm would terminate with

the nucleolus solution as y = (2; 2; 2).

If B1 is not empty, we repeat the minimization for step k = 2 with respect to those coalitions

in B1 that can still object and solve the 2nd LP problem,

min z = �2, subject to v(S)� x(S) � �2, S 2 B1, x 2 X1, �2 free variable.

Let "2 denote the minimized value of maximal excess and let X2 denote the allocations found after

solving the 2nd linear program, i.e., X2 � fx 2 X1 : maxS2B1 eS(x) = "
2g. We also de�ne

A2 = fS 2 B1 : eS(x) = "2, for all x 2 X2g,

B2 = fS 2 B1 : eS(x) < "2, for some x 2 X2g = B1 nA2.

We continue in this manner and for k = 3; : : : ; � we let "k � minx2Xk�1 �k, [where �k =

maxS2Bk�1 eS(x)] denote the minimized value of maximal excess after solving the kth linear pro-

gram,

min z = �k, subject to v(S)� x(S) � �k, S 2 Bk�1, x 2 Xk�1, �k free variable.

3
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For k = 3; : : : ; �, also de�ne

Ak = fS 2 Bk�1 : eS(x) = "k, for all x 2 Xkg,

Bk = fS 2 Bk�1 : eS(x) < "k, for some x 2 Xkg = Bk�1 nAk.

Xk � fx 2 Xk�1 : max
S2Bk�1

eS(x) = "
kg, (13)

Iterations stop when B� = ? at which stage X� will contain a single element, the nucleolus; see

Maschler et al. [11] for a proof of the convergence of this algorithm.

To illustrate the sequential LP method as summarized above, recall that the core of a three-

player game is the set of all imputations x = (x1; x2; x3) such that
P3
i=1 xi = v(123) and for all

S � N = f1; 2; 3g we have
P
i2S xi � v(S). If we cannot �nd a feasible x satisfying these conditions,

then the core is empty. Next, we use Maschler et al.�s algorithm to re-consider Examples 1 and 2,

in order to illustrate this algorithm and compare it with our algebraic method.

B.1.1 Application of Maschler et al.�s Algorithm [11] for the Calculation of Nucleolus
Solution of a Cooperative Game with Empty Core

Consider the cooperative game in Example 1. To �nd the nucleolus solution we start by solving the

following LP problem with B0 � ff1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3gg and X0 � fx : x1 + x2 + x3 =
v(123); x1 � v(1); x2 � v(2); x3 � v(3)g. Note that since �1 is a free variable, we write

�1 = �
0
1 � �001 with �01; �001 � 0.

min z = �01 � �001
subject to

f1g : v(1)� x1 � �01 � �001,
f2g : v(2)� x2 � �01 � �001,
f3g : v(3)� x3 � �01 � �001,

f1; 2g : v(12)� (x1 + x2) � �01 � �001,
f1; 3g : v(13)� (x1 + x3) � �01 � �001,
f2; 3g : v(23)� (x2 + x3) � �01 � �001,
x 2 X0 : x1 + x2 + x3 = v(123) = 9,

x 2 X0 : x1 � v(1) = 0; x2 � v(2) = 0; x3 � v(3) = 0,
�1 : �01 � 0; �001 � 0,

(14)

where the v(�) values are given in Example 1.
The unique optimal solution for this LP is found as (�01)

� = 1
3 , (�

00
1)
� = 0, ��1 =

1
3 , x

�
1 = 113 ,

x�2 = 3
1
3 and x

�
3 = 4

1
3 which gives "

1 = ��1 =
1
3 . With this optimal solution,the excesses eS(x) for

4
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each coalition are given in the following table:

Coalition: f1g f2g f3g f1; 2g f1; 3g f2; 3g
v(S) 0 0 0 5 6 8

x(S) =
P
i2S x

�
i 113 313 413 423 523 723

eS(x) = v(S)� x(S) �113 �313 �413
1
3

1
3

1
3 ,

and,

X1 = fx : x1 = 113 ; x2 = 3
1
3 ; x3 = 4

1
3g.

Thus, the coalitions with the minimum of the maximum excess "1 = 1
3 are f1; 2g, f1; 3g and f2; 3g,

and as a result A1 = ff1; 2g; f1; 3g; f2; 3gg so that B1 = B0 nA1 = ff1g; f2g; f3gg.
Since B1 6= ?, we continue with the second step of the algorithm. Because the formulation and

computation of the second (and subsequent) LP models are similar to those of the �rst LP model,

we do not provide a detailed discussion again but only summarize the results in Table 2.

Since B4 = ? as Table 2 indicates, we have found the nucleolus solution as y = (y1; y2; y3) =

(113 ; 3
1
3 ; 4

1
3).

B.1.2 Application of Maschler et al.�s Algorithm [11] for the Calculation of Nucleolus
Solution of a Cooperative Game with a Non-Empty Core

Consider the three-player cooperative game in Example 2. We now solve a sequence of LP problems

to compute the nucleolus solution. We model the �rst LP problem exactly as in (14) but use

the new values of [v(12); v(13); v(23) j v(123)] as in Example 2. Solving this problem we �nd

(�01)
� = 0, (�001)

� = 1, ��1 = �1, which gives "1 = ��1 = �1. However, the optimal solution

resulting in "1 = �1 is not unique as we can show using the following arguments: Introducing

six surplus variables si, i = 1; : : : ; 6, one for each inequality in the LP problem, we express the

basic variables (�001; x1; x2; x3; s3; s4; s6) in terms of the nonbasic variables (�
0
1; s1; s2; s5) in the �nal

simplex tableau:

�001 = 1 + [�
0
1]� 1

2 [s2]�
1
2 [s5] s3 = 3� s1 + 1

2 [s2] +
3
2 [s5]

x1 = 1 + s1 � 1
2 [s2]�

1
2 [s5] s4 = s1 +

1
2 [s2]�

1
2 [s5]

x2 = 1 +
1
2 [s2]�

1
2 [s5] s6 = 1� s1 + [s2] + [s5]

x3 = 4� s1 + [s5] z = �1 + 0 � [�01] + 0 � s1 + 1
2 [s2] +

1
2 [s5].

It is clear from the expression for z that if either s2 or s5 is made basic, then the objective would

increase which cannot be allowed, thus we �x s2 = s5 = 0. Since �001 = 1+ �
0
1, increasing �

0
1 would

also increase �001 by the same amount; thus the di¤erence �
0
1 � �001 would still be 1, so we also �x

�01 = 0, w.l.o.g. Note that the nonbasic variables s2 and s5 that must be �xed at 0 are enclosed in

a bracket [�] in the above table. However, the nonbasic variable s1 can be assigned positive values
without a¤ecting the value of the objective function provided that the basic variables are not driven

to negative levels. Since �001 and x2 do not involve s1, they are �xed at �
00
1 = 1 and x2 = 1. Next,
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we solve the �ve inequalities

x1 = 1 + s1 � 0 s4 = s1 � 0
x3 = 4� s1 � 0 s6 = 1� s1 � 0
s3 = 3� s1 � 0 z = �1,

simultaneously resulting from the conditions x1 � 0, x3 � 0, s3 � 0, s4 � 0 and s6 � 0. This gives
0 � s1 � 1 which implies x1 � 2, and x3 � 4. Thus, noting that x2 = 1 must require x1 + x3 = 5,
we have X1 = fx : x1 � 2; x2 = 1; x3 � 4; x1 + x3 = 5g. Also,

A1 = ff2g; f1; 3gg and B1 = B0 nA1 = ff1g; f3g; f1; 2g; f2; 3gg,

because for coalitions f2g and f1; 3g the excess equals ef2g(x) = 0�1 = �1 and ef1;3g(x) = 4�5 =
�1, thus they belong to A1.

Similar to our discussion in Appendix B.1.1, we present the other LP models and their solutions

in Table 2. From Table 2, we �nd that B3 = ? and the nucleolus solution is thus y = (y1; y2; y3) =
(32 ; 1;

7
2).

B.2 Algorithm for the Sequential LP Method in Potters et al. [15]

We �rst summarize Potters et al.�s sequential LP Method in [15], and use Examples 1 and 2 to

illustrate this approach. Let (N; v) denote a superadditive and essential 0-normalized n-player

cooperative game with n � 3. We also denote,

� � max
S2B0

v(S) and fS � � � eS(x) = � � [v(S)� x(S)],

where B0 = fS � N : S 6= ? and S 6= Ng, as de�ned in Appendix B.1.
Using the above notations, we summarize Potters et al.�s algorithm as follows:

1. Initialization: Let j = 0. Arbitrarily take  2 N , and consider the following 2n�1 equations:8><>:
x(N) = v(N),

fS + x(NnS) = v(N) + � � v(S), if S 2 B0 and  2 S,
fS � x(S) = � � v(S), if S 2 B0 but  =2 S.

The above equations can be written as,

�1x+�2f = d, (15)

where x denotes the n�dimensional column vector (xi, for i 2 N), as de�ned in Section 1,
i.e., x =(xi, for i 2 N). Moreover, in (15), f denotes the (2n� 2)�dimensional column vector
(fS , for S 2 B0), i.e., f � (fS , for S 2 B0); �1 and �2 denote the (2n � 1) � n coe¢ cient
matrix for x and the (2n � 1)� (2n � 2) coe¢ cient matrix for f , respectively; and d denotes

7
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the (2n � 1)�dimensional column vector with the ith element di as the constant number at
the RHS of the ith equation (i = 1; 2; : : : ; 2n � 1).

2. Search for the nucleolus solution. If Bj = ?, then the algorithm is terminated, and we

can solve the corresponding equations to �nd the nucleolus; otherwise, if Bj 6= ?, then we
continue with the following three steps:

(a) Let u1i and u2i denote the sum of all coe¢ cients of the fS variables in the ith row of

the matrices �1 and �2, respectively. Solve the following maximization problem,

max t

s.t. �1x+�2f + ht = d; t � 0, x � 0, f � 0.

In the above maximization problem, h denotes the (2n� 1)�dimensional column vector
with the ith element hi � u1i + u2i. As Potters et al. [15] suggested, use the simplex

method to solve the maximization problem in the tableau, starting with a pivot operation

in the t�column.
Then, do the pivot operations until there is a single row in which the coe¢ cient of t

is 1 and the coe¢ cients for other variables (i.e., xi, 8i 2 N and fS, 8S 2 B0) are

nonnegative. Assume, w.l.o.g., that the row after the pivot operation is the rth row.

(b) Do the following operations:

i. If, for S 2 Bj , the rth coordinate of the fs�column (i.e., the column for fS) is
positive, then denote Bj+1 = BjnfSg and remove the fs�column.

ii. If, for i 2 N , the rth coordination of the xi�column (i.e., the column for xi)
is positive, then replace the xi�column by the 0�column and add the equation:
xi = 0.

iii. If t = dr, i.e., the rth row is an elementary row with the coe¢ cient of t as 1, then

delete the rth row.

iv. If, in an elementary row, only the value for the coe¢ cient of fs is 1, then remove

both the elementary row and the fs�column.
(c) The resulting tableau is �1x + �2f = d. Set j := j + 1, and go back to examine if

Bj = ?. If Bj 6= ?, then repeat the above three steps.
In [15] Potters et al. proved that, using the above algorithm, we can �nd the nucleolus solution.

Next, we use the algorithm to re-solve the cooperative games in Examples 1 and 2.

B.2.1 Application of Potters et al.�s Algorithm [15] for the Calculation of Nucleolus
Solution of a Cooperative Game with Empty Core

Consider the cooperative game in Example 1. We follow Potters et al.�s Algorithm to search for

the nucleolus solution as follows:

1. Initialization. For this game, B0 � ff1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3gg and � = 8. We

8
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arbitrarily take  = 1. We write 7 equations as follows:8>>>>>>>>>>><>>>>>>>>>>>:

x1 + x2 + x3 = 9,

f12 + x3 = 12,

f13 + x2 = 11,

f1 + x2 + x3 = 17,

f23 � x2 � x3 = 0,
f2 � x2 = 8,
f3 � x3 = 8,

which can be written as �1x+�2f = d, where

x = [x1; x2; x3], f = [f12; f13; f23; f1; f2; f3];

�1 =

2666666666664

1 1 1

0 0 1

0 1 0

0 1 1

0 �1 �1
0 �1 0

0 0 �1

3777777777775
, �2 =

2666666666664

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3777777777775
, d =

2666666666664

9

12

11

17

0

8

8

3777777777775
.

2. Search for the nucleolus solution. Since B0 6= ?, we consider the following three steps:
(a) We involve the t�column, and have the tableau as,

t f12 f13 f23 f1 f2 f3 x1 x2 x3 d

0 0 0 0 0 0 0 1 1 1 9 S = v(123)

1 1 0 0 0 0 0 0 0 1 12 S = v(12)

1 0 1 0 0 0 0 0 1 0 11 S = v(13)

1 0 0 0 1 0 0 0 1 1 17 S = v(1)

1 0 0 1 0 0 0 0 �1 �1 0 S = v(23)

1 0 0 0 0 1 0 0 �1 0 8 S = v(2)

1 0 0 0 0 0 1 0 0 �1 8 S = v(3)

9
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The �rst pivot is in the t�column. We pivot with the �fth row and thus have,

t f12 f13 f23 f1 f2 f3 x1 x2 x3 d

0 0 0 0 0 0 0 1 1 1 9 S = f1; 2; 3g
0 1 0 �1 0 0 0 0 1 2 12 S = f1; 2g
0 0 1 �1 0 0 0 0 2 1 11 S = f1; 3g
0 0 0 �1 1 0 0 0 2 2 17 S = f1g
1 0 0 1 0 0 0 0 �1 �1 0 S = f2; 3g
0 0 0 �1 0 1 0 0 0 1 8 S = f2g
0 0 0 �1 0 0 1 0 0 0 8 S = f3g

For the second pivot we choose a column with negative �fth coordinate, e.g., the column

corresponding to x2. We pivot with the third row:

t f12 f13 f23 f1 f2 f3 x1 x2 x3 d

0 0 �1
2

1
2 0 0 0 1 0 1

2
7
2 S = f1; 2; 3g

0 1 �1
2 �1

2 0 0 0 0 0 3
2

13
2 S = f1; 2g

0 0 1
2 �1

2 0 0 0 0 1 1
2

11
2 S = f1; 3g

0 0 �1 0 1 0 0 0 0 1 6 S = f1g
1 0 1

2
1
2 0 0 0 0 0 �1

2
11
2 S = f2; 3g

0 0 0 �1 0 1 0 0 0 1 8 S = f2g
0 0 0 �1 0 0 1 0 0 0 8 S = f3g

Next, the third pivot must be in the column corresponding to x3, because, in the �fth

row, the coe¢ cient of x3 is negative. We pivot with the second row:

t f12 f13 f23 f1 f2 f3 x1 x2 x3 d

0 0 �1
3

2
3 0 0 0 1 0 0 4

3 S = f1; 2; 3g
0 1 �1

3 �1
3 0 0 0 0 0 1 13

3 S = f1; 2g
0 �1 2

3 �1
3 0 0 0 0 1 0 10

3 S = f1; 3g
0 �2 �2

3
1
3 1 0 0 0 0 0 5

3 S = f1g
1 1 1

3
1
3 0 0 0 0 0 0 23

3 S = f2; 3g
0 �2 1

3 �2
3 0 1 0 0 0 0 11

3 S = f2g
0 0 0 �1 0 0 1 0 0 0 8 S = f3g

Since there is no negative coe¢ cient in the �fth row, we �nish Step (a). Let r = 5.

(b) Because the 5th coordinates of the f12�, f13� and f23�columns are positive, we denote
B1 = B0nff1; 2g; f1; 3g; f2; 3gg = ff1g; f2g; f3gg and remove the t�, f12�, f13� and

f23�columns and the �fth row.

10
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(c) The resulting tableau is,

f1 f2 f3 x1 x2 x3 d

0 0 0 1 0 0 4
3 S = v(123)

0 0 0 0 0 1 13
3 S = v(12)

0 0 0 0 1 0 10
3 S = v(13)

1 0 0 0 0 0 5
3 S = v(1)

0 1 0 0 0 0 11
3 S = v(2)

0 0 1 0 0 0 8 S = v(3)

Since all rows are elementary, the algorithm terminates. We solve the tableau for x, and

thus �nd the nucleolus as y = (y1; y2; y3) = (43 ;
10
3 ;

13
3 ) = (1

1
3 ; 3

1
3 ; 4

1
3), which is the same

as that found in Example 1.

B.2.2 Application of Potters et al.�s Algorithm [15] for the Calculation of Nucleolus
Solution of a Cooperative Game with a Non-Empty Core

Consider the cooperative example in Example 2. We follow Potters et al.�s Algorithm to search for

the nucleolus solution as follows:

1. Initialization. For this game, B0 � ff1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3gg and � = 4. We

arbitrarily take  = 1. We write 7 equations as follows:8>>>>>>>>>>><>>>>>>>>>>>:

x1 + x2 + x3 = 6,

f12 + x3 = 9,

f13 + x2 = 6,

f1 + x2 + x3 = 10,

f23 � x2 � x3 = 1,
f2 � x2 = 4,
f3 � x3 = 4,

which can be written as �1x+�2f = d, where

x = [x1; x2; x3], f = [f12; f13; f23; f1; f2; f3];

�1 =

2666666666664

1 1 1

0 0 1

0 1 0

0 1 1

0 �1 �1
0 �1 0

0 0 �1

3777777777775
, �2 =

2666666666664

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3777777777775
, d =

2666666666664

6

9

6

10

1

4

4

3777777777775
.

2. Search for the nucleolus solution. Since B0 6= ?, we consider the following three steps:

11
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(a) We involve the t�column, and have the tableau as,

t f12 f13 f23 f1 f2 f3 x1 x2 x3 d

0 0 0 0 0 0 0 1 1 1 6 S = f1; 2; 3g
1 1 0 0 0 0 0 0 0 1 9 S = f1; 2g
1 0 1 0 0 0 0 0 1 0 6 S = f1; 3g
1 0 0 0 1 0 0 0 1 1 10 S = f1g
1 0 0 1 0 0 0 0 �1 �1 1 S = f2; 3g
1 0 0 0 0 1 0 0 �1 0 4 S = f2g
1 0 0 0 0 0 1 0 0 �1 4 S = f3g

The �rst pivot is in the t�column. We pivot with the �fth row and thus have,

t f12 f13 f23 f1 f2 f3 x1 x2 x3 d

0 0 0 0 0 0 0 1 1 1 6 S = f1; 2; 3g
0 1 0 �1 0 0 0 0 1 2 8 S = f1; 2g
0 0 1 �1 0 0 0 0 2 1 5 S = f1; 3g
0 0 0 �1 1 0 0 0 2 2 9 S = f1g
1 0 0 1 0 0 0 0 �1 �1 1 S = f2; 3g
0 0 0 �1 0 1 0 0 0 1 3 S = f2g
0 0 0 �1 0 0 1 0 1 0 3 S = f3g

For the second pivot we choose a column with negative �fth coordinate, e.g., the column

corresponding to x2. We pivot with the third row:

t f12 f13 f23 f1 f2 f3 x1 x2 x3 d

0 0 �1
2

1
2 0 0 0 1 0 1

2
7
2 S = f1; 2; 3g

0 1 �1
2 �1

2 0 0 0 0 0 3
2

11
2 S = f1; 2g

0 0 1
2 �1

2 0 0 0 0 1 1
2

5
2 S = f1; 3g

0 0 �1 0 1 0 0 0 0 1 4 S = f1g
1 0 1

2
1
2 0 0 0 0 0 �1

2
7
2 S = f2; 3g

0 0 0 �1 0 1 0 0 0 1 3 S = f2g
0 0 �1

2 �1
2 0 0 1 0 0 �1

2
1
2 S = f3g

Next, the third pivot must be in the column corresponding to x3, because, in the �fth

12
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row, the coe¢ cient of x3 is negative. We pivot with the sixth row:

t f12 f13 f23 f1 f2 f3 x1 x2 x3 d

0 0 �1
2 1 0 �1

2 0 1 0 0 2 S = f1; 2; 3g
0 1 �1

2 1 0 �3
2 0 0 0 0 1 S = f1; 2g

0 0 1
2 0 0 �1

2 0 0 1 0 1 S = f1; 3g
0 0 �1 1 1 �1 0 0 0 0 1 S = f1g
1 0 1

2 0 0 1
2 0 0 0 0 5 S = f2; 3g

0 0 0 �1 0 1 0 0 0 1 3 S = f2g
0 0 �1

2 �1 0 1
2 1 0 0 0 2 S = f3g

Since there is no negative coe¢ cient in the �fth row, we �nish Step (a). Let r = 5.

(b) Because the 5th coordinates of the f13� and f2�columns are positive, we denote B1 =
B0nff1; 3g; f2gg = ff1g; f3g; f1; 2g; f2; 3gg and remove the t�, f13� and f2�columns
and the �fth row.

(c) The resulting tableau is,

f12 f23 f1 f3 x1 x2 x3 d

0 1 0 0 1 0 0 2 S = f1; 2; 3g
1 1 0 0 0 0 0 1 S = f1; 2g
0 0 0 0 0 1 0 1 S = f1; 3g
0 1 1 0 0 0 0 1 S = f1g
0 �1 0 0 0 0 1 3 S = f2g
0 �1 0 1 0 0 0 2 S = f3g

3. Since B1 6= ?, we get the new t�column by making the sum of the coe¢ cients of the

fS�columns in each row, and �nd that,

t f12 f23 f1 f3 x1 x2 x3 d

1 0 1 0 0 1 0 0 2 S = f1; 2; 3g
2 1 1 0 0 0 0 0 1 S = f1; 2g
0 0 0 0 0 0 1 0 1 S = f1; 3g
2 0 1 1 0 0 0 0 1 S = f1g
�1 0 �1 0 0 0 0 1 3 S = f2g
0 0 �1 0 1 0 0 0 2 S = f3g

13
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(a) We pivot with the second row, and obtain,

t f12 f23 f1 f3 x1 x2 x3 d

0 �1
2

1
2 0 0 1 0 0 3

2 S = f1; 2; 3g
1 1

2
1
2 0 0 0 0 0 1

2 S = f1; 2g
0 0 0 0 0 0 1 0 1 S = f1; 3g
0 �1 0 1 0 0 0 0 0 S = f1g
0 �1

2 �1
2 0 0 0 0 1 7

2 S = f2g
0 0 �1 0 1 0 0 0 2 S = f3g

Since there is no negative coe¢ cient in the second row, we �nish Step (a). Let r = 2.

(b) Because the 2th coordinates of the f12� and f23�columns are positive, we denote B2 =
B1nff1; 2g; f2; 3gg = ff1g; f3gg and remove the t�, f12� and f23�columns and the
second row.

(c) The resulting tableau is,

f1 f3 x1 x2 x3 d

0 0 1 0 0 3
2 S = f1; 2; 3g

0 0 0 1 0 1 S = f1; 3g
1 0 0 0 0 0 S = f1g
0 0 0 0 1 7

2 S = f2g
0 1 0 0 0 2 S = f3g

Since all rows are elementary, the algorithm terminates. We solve the tableau for x, and

thus �nd the nucleolus as y = (y1; y2; y3) = (32 ; 1;
7
2), which is the same as that found in

Example 2.

B.3 Algorithm for the Sequential LP Method in Fromen [5]

We now summarize Fromen�s sequential LP Method in [5], which is then illustrated by using

Examples 1 and 2. In [5] Fromen suggested that, if the concept of �matrix rank�is introduced to

Behringer�s LP approach in [2], then the number of linear problems solved for the nucleolus can be

reduced to O(n).

Using our notations in Appendix B.1, we summarize Fromen�s algorithm as follows:

1. The �rst linear problem is developed as,

min z = �1, subject to v(S)� x(S) � �1, S 2 B0, x 2 X0, �1 free variable,

where, as de�ned in Appendix B.1, B0 = fS � N : S 6= ? and S 6= Ng and X0 =

fx :
Pn
i=1 xi = v(N); xi � v(i); i = 1; : : : ; ng. We also recall from Appendix B.1 that

14
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"1 = minx2X0 maxS2B0 eS(x) denote the minimized value of maximal excess; and,

X1 = fx 2 X0 : maxS2B0 eS(x) = "
1g,

A1 = fS 2 B0 : eS(x) = "1, for all x 2 X1g,

B1 = fS 2 B0 : eS(x) < "1, for some x 2 X1g = B0 nA1.

According to Fromen�s algorithm (or, Behringer�s algorithm), we should determine whether

or not the search process terminates and we arrive to the nucleolus solution, before solving

the second linear problem. Let �1 denote the matrix of the coe¢ cients of xi (i 2 N) in the
following equations: eS(x) = "1, for all S 2 A1. If the rank of �1 is equal to n, then the
algorithm terminates with the nucleolus solution as the optimal solution for the �rst linear

problem; otherwise, continue with the second linear problem.

2. Let

Z1 � fx :
Xn

i=1
xi = v(N); xi � v(i); i 2 B1; eS(x) = "1, for all S 2 A1g.

Solve the second LP problem,

min z = �2, subject to v(S)� x(S) � �2, S 2 B1, x 2 Z1, �2 free variable.

Using the optimal solution of the second linear problem, we denote by "2 the minimized value

of maximal excess, i.e., "2 = minx2Z1 maxS2B1 eS(x); and,

X2 = fx 2 Z1 : maxS2B1 eS(x) = "2g,

A2 = fS 2 B1 : eS(x) = "2, for all x 2 X2g,

B2 = fS 2 B1 : eS(x) < "2, for some x 2 X2g = B1 nA2.

Let �2 denote the matrix of the coe¢ cients of xi (i 2 N) in the following equations: eS(x) =
"r, for all S 2 Ar, r = 1; 2. If the rank of �2 is equal to n, then the algorithm terminates

with the nucleolus solution as the optimal solution for the second linear problem; otherwise,

continue with the third linear problem.

3. We continue in this manner and for k = 3; : : : ; � we let

Zk�1 � fx :
Xn

i=1
xi = v(N); xi � v(i); i 2 B2; eS(x) = "r, 8S 2 Ar, r = 1; 2; : : : ; k � 1g,

and, "k � minx2Zk�1 maxS2Bk�1 eS(x) denotes the minimized value of maximal excess after
solving the kth linear program,

min z = �k, subject to v(S)� x(S) � �k, S 2 Bk�1, x 2 Zk�1, �k free variable.
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For k = 3; : : : ; �, also de�ne

Xk = fx 2 Zk�1 : maxS2Bk�1 eS(x) = "kg,

Ak = fS 2 Bk�1 : eS(x) = "k, for all x 2 Xkg,

Bk = fS 2 Bk�1 : eS(x) < "k, for some x 2 Xkg = Bk�1 nAk.

Let �k denote the matrix of the coe¢ cients of xi (i 2 N) in the following equations: eS(x) =
"r, 8S 2 Ar, for r = 1; 2; : : : ; k. Iterations stop when the rank of �2 is equal to n. Fromen
[5] proved the convergence of this algorithm.

Next, we again use Examples 1 and 2 to illustrate the above LP method.

B.3.1 Application of Fromen�s Algorithm [5] for the Calculation of Nucleolus Solution
of a Cooperative Game with Empty Core

Using the cooperative game in Example 1, we illustrate Fromen�s LP method for �nding the nucle-

olus solution of a cooperative game with empty core.

1. We notice that the �rst linear problem in Fromen�s Algorithm is the same as that in Maschler

et al.�s algorithm. From Appendix B.1.1, we �nd that "1 = 1
3 , and

X1 = fx : x1 = 113 ; x2 = 3
1
3 ; x3 = 4

1
3g,

A1 = ff1; 2g; f1; 3g; f2; 3gg,

B1 = ff1g; f2g; f3gg.

We can thus write the equations eS(x) = "1 (for all S 2 A1) as,8><>:
v(12)� x1 � x2 = 1

3 ,

v(13)� x1 � x3 = 1
3 ,

v(23)� x2 � x3 = 1
3 ,

or, �1x =

264
14
3
17
3
23
3

375 ,
where

�1 =

264 1 1 0

1 0 1

0 1 1

375 and x =

264 x1x2
x3

375 .
The reduction of �1 to row-echelon form is as follows:

�1 =

264 1 1 0

1 0 1

0 1 1

375!
264 1 1 0

0 �1 1

0 1 1

375!
264 1 1 0

0 �1 1

0 0 2

375!
264 1 1 0

0 1 �1
0 0 1

375 .
Hence, the rank of �1 is 3. According to Fromen�s algorithm, the algorithm terminates with

the nucleolus solution as y = (y1; y2; y3) = (113 ; 3
1
3 ; 4

1
3), which is the same as that found in
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Example 1.

B.3.2 Application of Fromen�s Algorithm [5] for the Calculation of Nucleolus Solution
of a Cooperative Game with a Non-Empty Core

We use the cooperative example in Example 2 to illustrate Fromen�s LP method for a cooperative

game with a non-empty core.

1. Since the �rst linear problem in Fromen�s Algorithm is the same as that in Maschler et al.�s

algorithm, we learn from Appendix B.1.2 that "1 = �1 and

X1 = fx : x1 � 2; x2 = 1; x3 � 4; x1 + x3 = 5g,

A1 = ff2g; f1; 3gg,

B1 = B0 nA1 = ff1g; f3g; f1; 2g; f2; 3gg,

The equations eS(x) = "1 (for all S 2 A1) can be thus written as,(
v(2)� x2 = �1,
v(13)� x1 � x3 = �1,

or, �1x =

"
1

5

#
,

where

�1 =

"
0 1 0

1 0 1

#
and x =

264 x1x2
x3

375 .
Since the rank of �1 is obviously smaller than 3, we have to proceed with the second linear

problem.

2. We de�ne the set Z1 as,

Z1 = fx :
X3

i=1
xi = 6; xi � v(i); i 2 B1; x2 = 1; x1 + x3 = 5g

= fx : xi � v(i); i 2 B1; x2 = 1; x1 + x3 = 5g;
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and develop the second linear problem as,

min z = �02 � �002
subject to

f1g : v(1)� x1 � �02 � �002,
f3g : v(3)� x3 � �02 � �002,

f1; 2g : v(12)� (x1 + x2) � �02 � �002,
f2; 3g : v(23)� (x2 + x3) � �02 � �002,
x 2 X1 : x1 � v(1) = 0; x3 � v(3) = 0;

x1 + x2 � v(12) = 1; x2 + x3 � v(23) = 3,
S 2 A1 : x2 = 1,

S 2 A1 : x1 + x3 = 5,

�1 : �01 � 0; �001 � 0.

Solving the above linear problem , we �nd that "2 = �3
2 and

X2 = fx : x1 =
3

2
; x2 = 1; x3 =

7

2
g,

A2 = ff1g; f1; 2g; f2; 3gg,

B2 = B1 nA2 = ff3gg.

The equations eS(x) = "i (for all S 2 Ai, i = 1; 2) can be thus written as,8>>>>>><>>>>>>:

v(2)� x2 = �1,
v(13)� x1 � x3 = �1,
v(1)� x1 = �3

2 ,

v(12)� x1 � x2 = �3
2 ,

v(23)� x2 � x3 = �3
2 ,

or, �1x =

26666664
1

5
3
2
5
2
9
2

37777775 ,

where

�2 =

26666664
0 1 0

1 0 1

1 0 0

1 1 0

0 1 1

37777775 and x =

264 x1x2
x3

375 .
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We use the Gauss elimination method to �nd the echelon form of the matrix �2 as,

�2 =

26666664
0 1 0

1 0 1

1 0 0

1 1 0

0 1 1

37777775!
26666664
0 0 0

0 0 0

1 0 0

1 1 0

0 1 1

37777775 ,

which means that the rank of �2 is equal to 3. Thus, the algorithm terminates with the

nucleolus solution as y = (y1; y2; y3) = (32 ; 1;
7
2), which is the same as that found in Example

2.

Appendix C Proof of Theorem 1

For a three-player empty-core cooperative game in characteristic form, we �nd from (1) that ei(x) �
0, for i = 1, 2, 3. However, since the core of the game is empty, at least one of e12(x), e13(x) and

e23(x) must be positive. Otherwise, if e12(x), e13(x) and e23(x) are all equal to or less than zero,

then using (2) we have v(12) � x1 + x2, v(13) � x1 + x3 and v(23) � x2 + x3, which implies that
the core is not empty.

Therefore, the maximal excess must be one of e12(x), e13(x) and e23(x). Accordingly, in order

to minimize the maximal excess to �nd the nucleolus solution, we should change the imputation

x = (x1; x2; x3) to minimize the maximum of e12(x), e13(x) and e23(x). If e12(x) is the maximum,

then we reduce the value of x3 and increase the values of x1 and x2; but, this raises the excesses

e13(x) and e23(x). As a result, e12(x) must be equal to the maximum of e13(x) and e23(x). For

example, if e12(x) = e13(x) > e23(x), we can then reduce the values of x3 and x2 but increase the

value of x1, in order to make both e12(x) and e13(x) smaller; but this increases the excess e23(x).

Thus, the process terminates only when e12(x), e13(x) and e23(x) are equal. A similar argument

applies to the case in which e13(x) or e23(x) is the maximum.

In conclusion, after we minimize the maximal excess, the excesses e12(x), e13(x) and e23(x)

must be equal and also, they must be nonnegative, i.e., e12(x) = e13(x) = e23(x) � 0. We can then
solve the following equations,8><>:

v(12)� x1 � x2 = v(13)� x1 � x3,
v(12)� x1 � x2 = v(23)� x2 � x3,
v(123) = x1 + x2 + x3,

and �nd the values of xi, for i = 1, 2, 3. Because the payo¤s of all three players have been chosen

to minimize the maximal excess, we cannot make any change on the imputation x = (x1; x2; x3)

to reduce the other excesses ei(x) (i = 1, 2, 3). Otherwise, the maximal excess will be increased.

Thus, the nucleolus y = (y1; y2; y3) is found as (4). �
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Appendix D Proof of Lemma 1

We show the su¢ ciency and necessity of these conditions.

Su¢ ciency. In this part, if one of �ve conditions is satis�ed, then the largest excesses are reduced
to the minimum. We begin by showing the �rst su¢ cient condition. Since x1 = x2 = x3 = 1

3v(123);

v(123) � 3v(12), v(123) � 3v(13) and v(123) � 3v(23), we use (1) and (2) to �nd that

e1(x) = e2(x) = e3(x) = �
1

3
v(123),

e12(x) = v(12)� v(123) + x3 = v(12)�
2

3
v(123) � �1

3
v(123),

e13(x) = v(13)� v(123) + x2 = v(13)�
2

3
v(123) � �1

3
v(123),

e23(x) = v(23)� v(123) + x1 = v(23)�
2

3
v(123) � �1

3
v(123),

which implies that at least one of the excesses ei(x) (i = 1, 2, 3) is the largest. Next we prove

that the largest excesses arrive to the minimum when x1 = x2 = x3 = v(123)=3, that is, e1(x) =

e2(x) = e3(x). Suppose that e1(x) is the largest excess and e2(x) and e3(x) are both less than

e1(x). In order to decrease e1(x) = �x1, we should increase the value of x1. However, since
x1 + x2 + x3 = v(123), we must reduce the value of x2 and/or the value of x3, thereby increasing

the excess e2(x) = �x2 and/or e3(x) = �x3. This continues until e1(x) = e2(x) = e3(x). When

either e2(x) or e3(x) is the largest, we can obtain the same result. Thus, we can conclude that if

e1(x) = e2(x) = e3(x), v(123) � 3v(12), v(123) � 3v(13) and v(123) � 3v(23), then the largest

excesses arrive to the minimum; thus we reach the �rst su¢ cient condition.

We then discuss the second su¢ cient condition. From (5) we have e3(x) = e12(x). Recalling

from (2) that e3(x) = �x3 and e12(x) = v(12) � v(123) + x3, we �nd that in order to reduce
the excess e3(x), we should increase the value of x3. However, this increases the value of e12(x).

Therefore, we cannot change the imputation x = (x1; x2; x3) to reduce both e3(x) and e12(x)

simultaneously. Next, we show that e3(x) and e12(x) are two largest excesses; that is, we should

prove that e3(x)� e1(x) � 0, e3(x)� e2(x) � 0, e3(x)� e13(x) � 0 and e3(x)� e23(x) � 0.
1. From (1) we �nd that e3(x)� e1(x) = �x3 + x1. Using (5) we compute

e3(x)� e1(x) =
v(123) + v(12)

2
� x2 �

v(123)� v(12)
2

= v(12)� x2,

and we �nd that e3(x)� e1(x) � 0, which results from (6).

2. From (1) we �nd that e3(x)� e2(x) = �x3 + x2. Using (5) we compute

e3(x)� e2(x) = x2 �
v(123)� v(12)

2
,

and we �nd that e3(x)� e2(x) � 0 according to (6).
3. From (1) and (2) we �nd that e3(x) � e13(x) = �v(13) + v(123) � x3 � x2 = �v(13) + x1.
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Using (5) we compute

e3(x)� e13(x) = �v(13) + x1 =
v(123) + v(12)

2
� v(13)� x2,

and we �nd that e3(x)� e13(x) � 0 according to (6).
4. From (1) and (2) we also �nd that e3(x)� e23(x) = �v(23)+ v(123)�x1�x3 = �v(23)+x2.
Using (5) we compute e3(x)�e23(x) = �v(23)+x2 and, using (6), we �nd that e3(x)�e23(x) �
0.

Similarly, we can show the su¢ cient conditions 3 and 4. Next we discuss the last su¢ cient

condition. Using (11) we have e12(x) = e13(x) = e23(x) = [v(12) + v(13) + v(23) � 2v(123)]=3.
Next, we show that these three excesses are the largest, i.e., e12(x) � ei(x), i = 1, 2, 3. From

(1) and (2) we �nd that e12(x) � e1(x) = v(12) � v(123) + x3 + x1 = v(12) � x2. According
to (11) we have x2 = [v(123) + v(12) + v(23) � 2v(13)]=3, and thus compute e12(x) � e1(x) =
[2v(12)+2v(13)� v(123)� v(23)]=3. From (12) we �nd that e12(x)� e1(x) � 0, or, e12(x) � e1(x).
We can analogously show the e12(x) � e2(x) and e12(x) � e3(x). Hence, we conclude that if the
conditions (11) and (12) are satis�ed, then the largest excesses are reduced to the minimum.

Necessity. In this part, if the largest excesses are reduced to the minimum, then at least one of
�ve conditions must be satis�ed. Note that each of the six excesses e1(x), e2(x), e3(x), e12(x),

e13(x) and e23(x) could be largest. Next, assuming that each of these excesses is the largest, we

change the imputation x = (x1; x2; x3) under the constraint x1+x2+x3 = v(123) until it is reduced

to the minimum.

1. If e1(x) is the largest excess, then according to (1) we can increase the value of x1 to re-

duce this excess. However, from (2) we �nd that increasing x1 shall raise the excess e23(x).

Furthermore, because x1 + x2 + x3 = v(123), we should decrease x2 and x3, so increasing

e2(x) and e3(x) in (1). Note that the excesses e12(x) and/or e13(x) in (2) decrease when we

decrease x2 and/or x3 to reduce the largest excess e1(x). Thus, the largest excess reaches the

minimum when e1(x) = e23(x) or e1(x) = e2(x) = e3(x).

Consider the case that e1(x) = e23(x) and they are the largest excesses. Using (1) and (2) we

have the equation �x1 = v(23)� v(123) + x1 and solve it to obtain x1 = [v(123)� v(23)]=2.
Since x1 + x2 + x3 = v(123), we reach (9). In addition, since e1(x) is the largest excess, we

have 8>>>><>>>>:
e1(x)� e2(x) � 0,
e1(x)� e3(x) � 0,
e1(x)� e12(x) � 0,
e1(x)� e13(x) � 0,

or

8>>>><>>>>:
�x1 + x2 � 0,
�x1 + x3 � 0,
x2 � v(12),
x3 � v(13),

which is equivalent to (10). Thus, the fourth condition including (9) and (10) corresponds to

this case.

Next, we discuss the case that e1(x) = e2(x) = e3(x) and they are the largest excesses.

According to (1), we �nd �x1 = �x2 = �x3 and use x1 + x2 + x3 = v(123) to attain the

21



Analytic Solution for the Nucleolus of a Three-Player Cooperative Game Online Appendices

imputation x = (x1; x2; x3) = (v(123)=3; v(123)=3; v(123)=3). Because e1(x) is the largest

excess, we have 8><>:
e1(x)� e12(x) � 0,
e1(x)� e13(x) � 0,
e1(x)� e23(x) � 0,

or

8><>:
x2 � v(12),
x3 � v(13),
x1 � v(23).

Replacing xi (for i = 1, 2, 3) with their solutions and simplifying the above inequalities give

v(123) � max(3v(12), 3v(13), 3v(23)). Thus, we reach the �rst necessary condition.
2. Similarly, if e2(x) is the largest excess, then it reaches the minimum when e2(x) = e13(x)

or e1(x) = e2(x) = e3(x). We can also analogously show that the third necessary condition

including (7) and (8) corresponds to the case that e2(x) = e13(x).

3. Similarly, if e3(x) is the largest excess, then it arrives to the minimum when e3(x) = e12(x)

or e1(x) = e2(x) = e3(x). We can also show that the second necessary condition including

(5) and (6) corresponds to the case that e3(x) = e12(x).

4. If e12(x) is the largest excess, then according to (2) we can decrease the value of x3 to

reduce this excess. However, from (2) we �nd that decreasing x3 shall raise the excess e3(x).

Furthermore, since x1 + x2 + x3 = v(123), we should increase x1 and x2, so increasing e23(x)

and e13(x) in (2). Note that the excesses e1(x) and/or e2(x) in (1) decrease when we increase

x2 and/or x3 to reduce the largest excess e12(x). Thus, the largest excess reaches the minimum

when e12(x) = e3(x) or e12(x) = e13(x) = e23(x).

We have shown that the second necessary condition corresponds to the case that e3(x) =

e12(x). Next we use (2) to solve e12(x) = e13(x) = e23(x), and obtain (11). Since e12(x) is

the largest excess, we have e12(x) � ei(x) � 0, for i = 1, 2, 3; and we use (11) to simplify

these three inequalities and reach (12). Hence, the �fth necessary condition including (11)

and (12) corresponds to the case that e12(x) = e13(x) = e23(x).

5. Similarly, if e13(x) is the largest excess, then it reaches the minimum when e13(x) = e2(x)

or e12(x) = e13(x) = e23(x); the former corresponds to the third necessary condition and the

latter corresponds to the �fth necessary condition.

6. Similarly, if e23(x) is the largest excess, then it reaches the minimum when e23(x) = e1(x) or

e12(x) = e13(x) = e23(x); the former corresponds to the fourth necessary condition and the

latter corresponds to the �fth necessary condition.

This proves the lemma. �

Appendix E Proof of Theorem 2

We can easily �nd from Lemma 1 that if v(123) � max(3v(12), 3v(13), 3v(23)), the excesses

ei(x) (for i = 1, 2, 3) are the largest and thus the imputation x = (x1; x2; x3) = (v(123)=3;

v(123)=3; v(123)=3) when the largest excesses are reduced to the minimum. Since we have ob-

tained the values of xi, for i = 1, 2, 3, we cannot decrease any other excess. Hence, we arrive to

Case 1 in Theorem 2.
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Next, we consider the situation in which the largest excess is minimized because the second

condition in Lemma 1 is satis�ed. Under the condition, e3(x) = e12(x), x3 = [v(123)� v(12)]�2
and the value of x2 is determined under the constraint (6). By using (6), we consider the following

four cases in which we minimize the second largest excesses.

1. If v(123) � v(12) + 2v(23), v(123) � v(12) + 2v(13) and v(123) � 3v(12), then f[v(123) +
v(12)]=2 � v(13)g � v(12) � [v(123) � v(12)]=2 � v(23), and we can reduce (6) to [v(123) �
v(12)]=2 � x2 � v(12) and we can easily show that

max fv(23); v(13)g � [v(123)� v(12)]=2 � v(12). (16)

Next, we choose an appropriate value of x2 to minimize the second largest excesses subject to

[v(123) � v(12)]=2 � x2 � v(12). Except for the largest excesses e3(x) and e12(x), the other
excesses are computed as

e1(x) = �x1 = x2 �
v(123) + v(12)

2
, (17)

e2(x) = �x2, (18)

e13(x) = x2 � v(123) + v(13),

e23(x) = v(23)� v(123) + x1 = v(23)�
v(123)� v(12)

2
� x2:

Using (16) we have e1(x) � e13(x) and e2(x) � e23(x), which implies that e1(x) and/or

e2(x) could be the second largest excess. From (17) and (18) we �nd that the second largest

excesses are reduced to the minimum as e1(x) = e2(x), or, x2 = [v(123) + v(12)]=4, which

satis�es the constraint [v(123) � v(12)]=2 � x2 � v(12). Since x1 + x2 + x3 = v(123), we

compute x1 = x2 = [v(123) + v(12)]=4. We notice that the other excesses (i.e., e13(x) and

e23(x)) cannot be reduced because the imputation x has been determined; thus, the nucleolus

solution is y1 = y2 = [v(123) + v(12)]=4 and y3 = [v(123) � v(12)]=2, which corresponds to
the second case (with i; j = 1; 2 and i 6= j, and k = 3) in Theorem 2.

2. If v(123) � v(12)+2v(23), v(123) � v(12)+2v(13) and v(12) � v(13), then v(12) � f[v(123)+
v(12)]=2�v(13)g � [v(123)�v(12)]=2 � v(23), and we can reduce (6) to [v(123)�v(12)]=2 �
x2 � f[v(123) + v(12)]=2 � v(13)g. Similar to the last case, we can show that under this

condition the nucleolus solution is computed as y = (y1; y2; y3) = ([v(12)+v(13)]=2; [v(123)�
v(13)]=2; [v(123) � v(12)]=2), which corresponds to the third case (with i = 1, j = 2 and

k = 3) in Theorem 2.

3. If v(123) � v(12) + 2v(23), v(123) � v(12) + 2v(13) and v(12) � v(23), then we �nd the

formula of computing nucleolus solution for the third case (with i = 2, j = 1 and k = 3) in

Theorem 2.

4. If v(123) � v(12) + 2v(23), v(123) � v(12) + 2v(13) and v(123) + v(12) � 2[v(13) + v(23)],
then we �nd the formula of computing nucleolus solution for the fourth case (with i; j = 1; 2

and i 6= j, and k = 3) in Theorem 2.
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Similar to our above analysis, we can analyze the third and fourth conditions in Lemma 1, and

reach the corresponding results in Theorem 2.

From Lemma 1 we �nd that under the condition (12), the excesses e12(x), e13(x) and e23(x)

are the largest and the triple imputation x is obtained as (11). Thus, we cannot decrease any other

excess. Hence, we arrive to �fth case in Theorem 2. �
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1. Comment: �The �rst referee questions the extent of the contribution and its �t to NRL
and raises some issues similar to mine about the claims made about the wide use of the

Nucleolus. Further this referee rightly points out that the computational comparisons

are not fair as there are other recipes that are faster than the benchmark used by the

authors. The authors should address the points made by this referee in any subsequent

revision.�

Response: We agree with you and Reviewer 1 that, in addition to Maschler et al.�s
algorithm, it is important to use other available LP methods to solve the two examples

that we had solved by using Maschler et al.�s algorithm in the October 2009 version.

In order to choose the methods that are faster than Maschler et al.�s, we compare all

LP methods listed in Table 1. We �nd from our comparison that the LP approaches in

Potters et al. [15] and Fromen [5] seem to be the two �relatively easy-to-implement�

ones compared with other LP methods. For our detailed discussions on the LP methods

in Table 1, see the �rst four paragraphs in online Appendix B.
Accordingly, we �rst described Maschler et al.�s sequential LP approach in online Ap-
pendix B.1 and presented two examples to illustrate this approach. Note that this
material is almost the same as that in previous Section 2 of the October 2009 version.

We still keep this material in online Appendix B because Maschler et al.�s LP ap-

proach in [11, 1979] is an early one in applying the LP method to the calculation of the

nucleolus solution. Then, in online Appendices B.2 and B.3, we respectively sum-
marize the LP methods by Potters et al. [15, 1996] and Fromen [5, 1997], and illustrate

these two methods with two numerical examples (that we had used to illustrate Maschler

et al.�s LP approach).

From our descriptions and illustrations of the three algorithms in the online Appendix
B, we can �nd that the sequential LP method is not easy to use for the calculation of
the nucleolus solution.

� Responses to Reviewer 2�s Major Comments that you mentioned

2
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1. Comment: �The second referee thinks this paper can be technical note. This referee
raises 9 issues. The �rst one is easily resolved, the authors should just make a clearer

discussion of their assumptions (they do this, but it needs to be more clear). Please

see point 6 as well with respect to this. The rest of the comments are mainly editorial,

please pay careful attention in any subsequent revision and respond to this referee. (9)

raises a issue in the proof of Theorem 1. The proof is correct, please add a few lines

explaining why this works.�

Response: We have very carefully considered all of the nine comments from Reviewer

2, and revised our paper accordingly .

(a) Reviewer 2�s Comment 6. We agree that we should have provided more com-
pact results rather than many formulas in previous Table 3. Accordingly, we now

summarize our previous formulas and present our results in Theorem 2 on page
6.
Moreover, as Reviewer 2 suggested, it would be helpful to use the current com-

pact results to obtain some insights. We used our results in current Theorem 2 to

demonstrate that the nucleolus is not always monotonic; this has been proved by

Megiddo [12]. For our discussion, see page 7, indicated by AE.2.6� short for AE�s
Comment that is also Reviewer 2�s Comment 6 on the page margin.

(b) Reviewer 2�s Comment 9. Following your and Reviewer 2�s comment, we now
�rst prove that e12(x) = e23(x) = e13(x), and then show that, because the core is

empty, e12(x) = e23(x) = e13(x) > 0. For our new proof, see online Appendix C.

For this revision, we considered all comments from you and the two reviewers, and did our best

to reduce our previous full paper to the current technical note. We hope that you will be satis�ed

with the note.
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�Analytic Solution for the Nucleolus of a Three-Player Cooperative Game�
by M. Leng and M. Parlar

Submitted to Naval Research Logistics (NRL-09-0175)

Responses to Reviewer 1�s Comments on the October 2009 Version1

Thank you for your helpful comments on the October 2009 version of our paper. We carefully

read your report entitled �Referee Report on �Analytic Solution for the Nucleolus of a Three-Player

Cooperative Game�,�and revised the paper in accordance with your comments and the comments

provided by the AE and Reviewer 2. We hope that you will �nd the revision satisfactory.

We summarize below our responses to your comments:

� Comment 1: �Length vs. Contribution. I agree with the authors that the use of these
analytical expressions saves time and has practical value when three-player games are ana-

lyzed. However, it is my belief that a tool that has such limited application (n = 3) does

not merit a full-length paper in Naval Research Logistics. As I mentioned above, the results

can help in calculating the nucleolus in small games, so I can potentially see it published as a

short, 5� 6 pages technical note (for instance, I am not sure if the lengthy description of the

sequential LP method for computing the nucleolus is necessary, especially in the main body

of the paper).�

Response: We agree with you, the AE and Reviewer 2�s recommendation to reduce our
previous full paper to a short technical note. More speci�cally, we did our best to reduce our

note�s length by moving to online appendices the following materials:

1. In our previous full paper (i.e., the October 2009 version), we provided an example in

Section 1 (Introduction) to show how to transform a superadditive, and essential three-

player game to a �0-normalized�game with zero characteristic values of all one-player

coalitions. This transformation is only tangentially relevant to our note; thus, we moved

this example to online Appendix A entitled �Transformation of a Superadditive and

Essential Game to a �Zero-Normalized�Game.�

2. As you, the AE and Reviewer 2 suggested, we moved the sequential LP methods to

online Appendix B entitled �Sequential LP Method for Computing the Nucleolus

Solution.� In addition, following your comment, we used two other LP algorithms to

solve the two examples that were solved only by using Maschler et al. [11, 1979] in the

October 2009 version of our paper. For our detailed discussion on this issue, see our

response to your next comment �Comparisons with Other Methods.�
3. Since the three proofs for this note are quite lengthy, we decided to move them to online
Appendices C, D and E.

In addition to moving the above materials to online appendices, we also did our best to

shorten the main body of this note. As a result, the note only includes 9 pages.

1We identi�ed your reviewer number from the AE�s report.
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� Comment 2: �Comparisons with Other Methods. While the analytical expressions
from this work provide a time-saving tool, the authors have chosen to compare the �speed�

of their method to the algorithm provided by Maschler et al. (1979), which, in view of their

Table 1, is clearly dominated by several methods that were developed afterwards (and can

work with more than 3 players). In the interest of fairness, it would be useful to look at how

some of the other, faster methods perform on the examples provided.�

Response: In order to choose the methods that are faster than Maschler et al.�s, we compared
all LP methods listed in Table 1. We �nd from our comparison that the LP approaches in

Potters et al. [15, 1996] and Fromen [5, 1997] should be two �relatively easy-to-implement�

ones compared with other LP methods. For our detailed discussions on the LP methods in

Table 1, see the �rst four paragraphs in online Appendix B.
Accordingly, we �rst described Maschler et al.�s sequential LP approach in online Appendix
B.1 and presented two examples to illustrate this approach. Note that this material is almost
the same as that in previous Section 2 of the October 2009 version. We still keep this material

in online Appendix B because Maschler et al.�s LP approach in [11, 1979] is an early one

in applying the LP method to the calculation of the nucleolus solution. Then, in online
Appendices B.2 and B.3, we respectively summarize the LP methods by Potters et al. [15,
1996] and Fromen [5, 1997], and illustrate these two methods with two numerical examples

(which we had used to illustrate Maschler et al.�s LP approach).

From our descriptions and illustrations of three algorithms in online Appendix B, we can
�nd that the sequential LP method is not easy to use for the calculation of the nucleolus

solution.

� Comment 3: �Usage of the Nucleolus. Unrelated to the above comments, I am not sure if
the paper with purely technical contribution is a good �t with Naval Research Logistics; I leave

this decision to the AE. However, the authors mention in the Introduction (p.1) that �The

nucleolus has become an important solution concept used wildly in cooperative games. . . �and

that �The nucleolus solution concept has been widely used to solve a variety of problems for

cooperative games in characteristics function form.�I am not sure if such strong statements

are justi�ed, as complexities in calculation of the nucleolus seemed to have prohibited its

widespread use in practical (more speci�cally, OM and/or logistics) applications. I would

either like to see some additional evidence supporting these statements (the authors reference

four papers, one of them their own), or the statements should be modi�ed and toned down.�

Response: We agree with you that the computational complexity of the nucleolus solution
restricts the applications of this concept, and we should modify our previous strong state-

ments. This was also suggested by the AE. Accordingly, in the current technical note, we

have deleted our previous statement �The nucleolus has become an important solution con-

cept used widely in cooperative games. . .�For this revision, please see page 1, indicated by
R1.3.1� short for Reviewer 1�s Comment 3 (Question 1) on the page margin.

2
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In addition, we also agree with you that, in the October 2009 version, our previous state-

ment �The nucleolus solution concept has been widely used to solve a variety of problems for

cooperative games in characteristics function form.�was unduly strong.

We accordingly deleted the above statement, and instead wrote the following: �Nucleolus

solution is an important concept in cooperative game theory even though it is not easy to

calculate. As Maschler et al. [11, p. 336] pointed out, the nucleolus satis�es some desirable

properties� e.g., it always exists uniquely in the core if the core is non-empty, and is therefore

considered an important fair division scheme. As a consequence, some researchers have used

this concept to analyze business and management problems; but, due to the complexity of

calculations, the nucleolus has not been extensively used to solve allocation-related problems.�
For the statements, see page 1, indicated by R1.3.2 on the page margin.
In addition to the above two statements that you mentioned, we carefully checked the complete

technical note, and revised some a few other �strong�statements. We hope that you will �nd

our current statements satisfactory.

� Comment 4: �Cost-Saving Agreements and Allocation Rules. On a related note, one
of the papers referenced in support of the use of the nucleolus is Barton (1992). The authors

quote this work in providing arguments that the nucleolus is a good tool for allocation of

joint costs among entities who share a common resource, as the use of the nucleolus can

reduce the possibility that one or more entities may wish to withdraw from resource-sharing

arrangement. However, in the interest of fairness and objectivity, the authors should then

also quote Megiddo (1974), who showed that the nucleolus is not monotonic in the aggregate.

This implies that, for instance, if a cost overrun occurs, some entities may bene�t by having

their share of costs reduced (see, e.g., Young 1985 for an example). Thus, some other solution

concepts (e.g., the Shapley value, which may not be in the core but satis�es this and other

monotonicity criteria , or the per capita nucleolus (Grotte 1970), which is in the core) may

be better candidates for cost-sharing agreements.�

Response: Thank you for suggesting three new, and important, references. We agree that
if, in Barton�s cost allocation problem, the cost for running the common resource increases,

then the nucleolus solution may suggest a lower cost allocated to some entities. This is

possible because, as Megiddo [12] proved, the nucleolus is not always monotonic. In fact, it

has been showed that some other concepts satisfy the monotonicity property and may be used

instead of the nucleolus. For example, Young [23] proved that the Shapley value is a unique,

monotonic solution, even though this concept may not be in the core if the core is non-empty.

In [8], Grotte normalized the nucleolus� by dividing the �excess� of each coalition by the

number of players in the coalition� and correspondingly, introduced the new concept �per

capita (normalized) nucleolus�as an alternative one of the nucleolus solution. Grotte showed

that the per capita nucleolus is monotonic and also always exists in the core if the core is

non-empty. Thus, for some cost-sharing problems such as that in Barton [1], the per capita

nucleolus may be better than the nucleolus solution; but, we notice that the calculation for

3
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the per capita nucleolus could be more complicated than that for the nucleolus.

Following your comment, we include the above material in our technical note; see page 2,
indicated by R1.4 on the page margin.

For this revision, we considered all comments from you, the AE and Reviewer 2, and did our

best to reduce our previous full paper to the current technical note. We hope that you will be

satis�ed with the note.
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�Analytic Solution for the Nucleolus of a Three-Player Cooperative Game�
by M. Leng and M. Parlar

Submitted to Naval Research Logistics (NRL-09-0175)

Responses to Reviewer 2�s Comments on the October 2009 Version1

Thank you for your helpful comments on the October 2009 version of our paper. We carefully

read your report entitled �Review for NRL-09-0175: Analytic Solution for the Nucleolus of a Three-

Player Cooperative Game�, and revised the paper in accordance with your comments and the

comments provided by the AE and Reviewer 1. We hope that you will �nd the revision satisfactory.

As you, the AE and Reviewer 1 suggested, we reduced our previous full paper to a short technical

note. Following your detailed comments, we shortened our previous paper and now present a short

note that includes only 9 pages. Several related materials (the sequential LP methods, proofs, etc.)

that are supplementary to our technical note are provided in online Appendices A�E.
We summarize below our responses to your nine comments:

1. Comment 1: �The paper does not explicitly state that the nucleolus is always unique. In-
stead at various places, the authors state/show that the closed-form expressions they provide

result in a unique solution. I �nd this somewhat confusing. Instead it should be stated early

on (probably in the Introduction section where certain properties of the nucleolus are intro-

duced) that the nucleolus is unique. Then later on in the paper there is no need to state that

the closed-form expressions result in a unique solution. Since they are claimed to characterize

the nucleolus, the solution has to be unique.�

Response: We agree that the uniqueness of the nucleolus solution should have been men-
tioned in Section 1 (Introduction) only. Following your comment, we stated in Section 1

(Introduction) that the nucleolus solution is unique. For our statement, see page 1, indicated
by R2.1� short for Reviewer 2�s Comment 1 on the page margin. In other sections of
our technical note, we don�t mention the uniqueness again.

2. Comment 2: �I suggest that the last sentence of the �rst paragraph on page 3 (the sentence
that starts with even though) be removed. It is not clear how/if the method proposed in this

paper can be generalized to problems with more than three players.�

Response: We agree with you, and have removed the sentence. See page 3, indicated by
R2.2 on the page margin.

3. Comment 3: �Towards the middle of page 6 (around line 24), the authors state the nucleolus
solution of a game as found by the analytical approach proposed in the paper. However at

this point, the reader does not know anything about the analytical approach and hence it

may be better not to mention the nucleolus solution at all at this point.�

Response: We agree with you; now, this material has been moved to online Appendix
A. We did this because of the following reason: In our previous full paper (i.e., the October

1We identi�ed your reviewer number from the AE�s report.

1



NRL-09-0175 Responses to Reviewer 2�s Comments

2009 version), we provided an example in Section 1 (Introduction) to show how to transform

a superadditive, and essential three-player game to a �0-normalized�game with zero char-

acteristic values of all one-player coalitions. This example includes our statement that you

questioned. Since the transformation is only tangentially relevant to our note, we moved this

example (including that statement) to online Appendix A entitled �Transformation of a

Superadditive and Essential Game to a �Zero-Normalized�Game.�

Since our algebraic approach is presented in the technical note, we think that it should be

acceptable to mention the calculation of the nucleolus in online Appendix A.

4. Comment 4: �I am confused by the �rst two paragraphs of section 2. The section starts by

stating that Maschler et al. developed an LP-based algorithm for computing the nucleolus

solution of a cooperative game. Then references are made to alternative solution techniques

proposed by Wang, Owen, Barton and Carter and Walker. The way I interpret this paragraph

is that Wang and Owen fail to provide guidance on �nding the nucleolus solution when the LPs

in question have alternative solutions. Barton and then Carter and Walker tried to resolve

this problem, but their approaches were not entirely accurate and the current paper re�nes the

method proposed by Barton and Carter. Is my interpretation correct? If my interpretation

is correct, where does the method proposed by Maschler et al. stand in this discussion? Is

their method silent on how to interpret alternative solutions, too? From reading the �rst

paragraph of section 2, I get the impression that Maschler et al. already proposed a way to

interpret alternative solutions in computing the nucleolus solution and this paper is merely

providing two examples. Is that the case? If so, what is the contribution of section 2?�

Response: We believe the �rst two paragraphs in our previous Section 2 of the October
2009 version were not clear enough and thus confused you. In fact, as an early publication

regarding the sequential LP method, Maschler et al. [11] used the concept of lexicographic

centre to develop an LP procedure involving O(4n) minimization LP problems. This LP

approach has been adopted by some textbooks (e.g., Wang [22]) as a �typical�method to

calculate the nucleolus solution. However, neither in Maschler et al. [11] nor in the textbooks

that applied Maschler et al.�s algorithm to some examples, we could �nd any detailed (i.e.,

step by step) explanations about the LP method in [11], especially when a linear problem

exhibits alternative optimal solutions. Therefore, in previous Section 2 of the October 2009

version, we wrote the �rst two paragraphs just to show that previous Section 2 was needed

in the October 2009 version of our paper.

As the AE and Reviewer 1 suggested, the sequential LP method is not very important to our

technical note; and it should be instead moved to an online appendix. Accordingly, we moved

our LP discussions to online Appendix B. Thus, we reduced the �rst two paragraphs in our
previous Section 2 of the October 2009 version to a short paragraph; see the �rst paragraph
in online Appendix B.1.
You may notice that, in online Appendix B, we also used a few other LP methods to solve
the two examples that we had solved by using Maschler et al.�s algorithm in the October

2
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2009 version of our paper. We did this because, as Reviewer 1 suggested, we were asked to

choose the methods that are faster than Maschler et al.�s algorithm and compare them with

Maschler et al.�s. We found that the LP approaches in Potters et al. [15] and Fromen [5] were

two �relatively easy-to-implement�ones compared to the other LP methods.

Accordingly, in online Appendix B, we �rst described Maschler et al.�s sequential LP
approach in Section B.1 and presented two examples to illustrate this approach. Note that
this material is almost the same as that in previous Section 2 of the October 2009 version.

We still keep this material in online Appendix B because Maschler et al.�s LP approach in

[11] is an early one in applying the LP method to the calculation of the nucleolus solution.

Then, in Sections B.2 and B.3, we respectively summarize the LP methods by Potters et
al. [15] and Fromen [5], and illustrate these two methods with two numerical examples (that

we had used to illustrate Maschler et al.�s LP approach).

5. Comment 5: �Right after Theorem 2, two examples are provided to demonstrate that the

algebraic method proposed in this paper computes a unique nucleolus solution. But as I

stated before, the nucleolus solution is unique and so, if the method proposed is accurate, it

should compute a unique solution. Therefore I suggest that these two examples are removed

from the paper.�

Response: We agree with you that these two examples should be deleted. In the current
technical note, we don�t provide any examples after Theorem 2 to show the uniqueness.

6. Comment 6: �Using the fact that some of the formulas in Table 3 have a common structure
(for example, cases 2, 6, and 10 share the same structure both in terms of conditions and

the resulting formulas. Similarly 5, 9 and 13 have the same structure.), it should be possible

to collapse Table 3. This more compact representation will both shorten the paper and also

may allow the authors to generate some insights based on the closed form expressions they

obtain. For example, can anything be said about the monotonicity properties of the nucleolus

solution (beyond what is known for the nucleolus solution in general, e.g. the fact that the

nucleolus payo¤ to a player may decrease even when v(N) increases)?

Response: Thank you for this helpful comment; we agree with you that we it would be
useful to provide more compact results rather than several formulas in previous Table 3.

Accordingly, we summarized our previous formulas and presented our results in Theorem 2
on page 6.
Moreover, as you suggested, we also used our results in current Theorem 2 to demonstrate

that the nucleolus is not always monotonic; this has been proved by Megiddo [12]. For our

discussion, see page 7, indicated by R2.6 on the page margin.

7. Comment 7: �The Maple worksheets that are available from the authors� web site are

potentially useful in computing the nucleolus solution algebraically. However I don�t think

Table 4 adds any value to the paper. Simply listing the nucleolus solutions obtained by the LP

3
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and algebraic methods on the same table (not surprisingly both methods come up with the

same solutions) does not demonstrate the computational convenience of the method proposed

(On a di¤erent note, I don�t think showing the computational simplicity of the proposed

method over the LP method would make a strong contribution anyway). In addition, since

the algebraic method is proven to be exact, stating that it �nds the same solutions as the LP

method for a variety of games from the literature is not useful either. Hence I suggest this

table be removed from the paper.�

Response: We agree with you, and accordingly removed previous Table 4. This table

disappears in our current technical note.

8. Comment 8: �I suggest that the last paragraph of the Conclusions section be removed. Since
it is not clear how the method can be extended to more than three players (more importantly

to a general n-player game), it is not really useful to list it as a potential extension of the

current paper. In addition, I also suggest that the last two sentences of the second to last

paragraph be removed, too. Again, it is not surprising that the algebraic method assures the

uniqueness of the nucleolus solution. It is also not fair to compare a computational method

with close-form expressions in terms of how simple they are to use in computing the nucleolus

solution.�

Response: We have already removed the last two sentences of our previous second paragraph
and also the last paragraph in the October 2009 version of our paper.

9. Comment 9: �I have a question regarding the proof of Theorem 1. Since the core of the game
is empty, we know that at least one of the excesses eij(x) must be positive. But then further

in the proof it is assumed that (if statement used) e12(x) = e23(x) = e13(x) > 0. The closed-

form expressions are derived under this assumption. Shouldn�t the authors �rst argue that in

the nucleolus solution e12(x) = e23(x) = e13(x) (the way it is argued in the proof of Lemma 1)

and then state that, because the core is empty, it must be that e12(x) = e23(x) = e13(x) > 0?�

Response: Following your comment, we now �rst prove that e12(x) = e23(x) = e13(x), and
then show that, because the core is empty, e12(x) = e23(x) = e13(x) > 0. For our new proof,

see online Appendix C.

For this revision, we considered all comments from you, the AE and Reviewer 1, and did our

best to reduce our previous full paper to the current technical note. We hope that you will �nd the

note satisfactory.
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