Families
MP
2015-06-09
> setwd("D:/Dropbox/R/2015-NUS/Session-3/(a) Hierarchical/Family")
> Dataset <-
+ read.table("D:/Dropbox/R/2015-NUS/Session-3/(a) Hierarchical/Family/Families.csv",
+ header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=TRUE)
> scatterplot(y~x, reg.line=FALSE, smooth=FALSE, spread=FALSE,
+ id.method='mahal', id.n = 6, boxplots=FALSE, span=0.5, data=Dataset)
![plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4]()
1 2 3 4 5 6
1 2 3 4 5 6
> scatterplot(y~x, reg.line=FALSE, smooth=FALSE, spread=FALSE,
+ id.method='mahal', id.n = 6, boxplots=FALSE, span=0.5, data=Dataset)
![plot of chunk unnamed-chunk-5 plot of chunk unnamed-chunk-5]()
1 2 3 4 5 6
1 2 3 4 5 6
> HClust.1 <- hclust(dist(model.matrix(~-1 + x+y, Dataset)) , method=
+ "single")
> plot(HClust.1, main= "Cluster Dendrogram for Solution HClust.1", xlab=
+ "Observation Number in Data Set Dataset",
+ sub="Method=single; Distance=euclidian")
![plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6]()